Bioluminescence in Vibrio fischeri is controlled by the redox-responsive regulator ArcA.

نویسندگان

  • Jeffrey L Bose
  • Unmi Kim
  • Wojciech Bartkowski
  • Robert P Gunsalus
  • Ashley M Overley
  • Noreen L Lyell
  • Karen L Visick
  • Eric V Stabb
چکیده

Bioluminescence generated by the Vibrio fischeri Lux system consumes oxygen and reducing power, and it has been proposed that cells use this to counteract either oxidative stress or the accumulation of excess reductant. These models predict that lux expression should respond to redox conditions; yet no redox-responsive regulator of lux is known. We found that the luxICDABEG operon responsible for bioluminescence is repressed by the ArcAB system, which is activated under reducing conditions. Consistent with a role for ArcAB in connecting redox monitoring to lux regulation, adding reductant decreased luminescence in an arc-dependent manner. ArcA binds to and regulates transcription from the luxICDABEG promoter, and it represses luminescence both in the bright strain MJ1 and in ES114, an isolate from the squid Euprymna scolopes that is not visibly luminescent in culture. In ES114, deleting arcA increased luminescence in culture approximately 500-fold to visible levels comparable to that of symbiotic cells. ArcA did not repress symbiotic luminescence, but by 48 h after inoculation, ArcA did contribute to colonization competitiveness. We hypothesize that inactivation of ArcA in response to oxidative stress during initial colonization derepresses luxICDABEG, but that ArcAB actively regulates other metabolic pathways in the more reduced environment of an established infection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coordination of the Arc Regulatory System and Pheromone-Mediated Positive Feedback in Controlling the Vibrio fischeri lux Operon

Bacterial pheromone signaling is often governed both by environmentally responsive regulators and by positive feedback. This regulatory combination has the potential to coordinate a group response among distinct subpopulations that perceive key environmental stimuli differently. We have explored the interplay between an environmentally responsive regulator and pheromone-mediated positive feedba...

متن کامل

FNR-mediated regulation of bioluminescence and anaerobic respiration in the light-organ symbiont Vibrio fischeri.

Vibrio fischeri induces both anaerobic respiration and bioluminescence during symbiotic infection. In many bacteria, the oxygen-sensitive regulator FNR activates anaerobic respiration, and a preliminary study using the light-generating lux genes from V. fischeri MJ1 cloned in Escherichia coli suggested that FNR stimulates bioluminescence. To test for FNR-mediated regulation of bioluminescence a...

متن کامل

LuxU connects quorum sensing to biofilm formation in Vibrio fischeri.

Biofilm formation by Vibrio fischeri is a complex process involving multiple regulators, including the sensor kinase (SK) RscS and the response regulator (RR) SypG, which control the symbiosis polysaccharide (syp) locus. To identify other regulators of biofilm formation in V. fischeri, we screened a transposon library for mutants defective in wrinkled colony formation. We identified LuxQ as a p...

متن کامل

Bright mutants of Vibrio fischeri ES114 reveal conditions and regulators that control bioluminescence and expression of the lux operon.

Vibrio fischeri ES114, an isolate from the Euprymna scolopes light organ, produces little bioluminescence in culture but is ∼1,000-fold brighter when colonizing the host. Cell-density-dependent regulation alone cannot explain this phenomenon, because cells within colonies on solid medium are much dimmer than symbiotic cells despite their similar cell densities. To better understand this low lum...

متن کامل

In silico Prediction and Docking of Tertiary Structure of LuxI, an Inducer Synthase of Vibrio fischeri

Background: LuxI is a component of the quorum sensing signaling pathway in Vibrio fischeri responsible for the inducer synthesis that is essential for bioluminescence. Methods: Homology modeling of LuxI was carried out using Phyre2 and refined with the GalaxyWEB server. Five models were generated and evaluated by ERRAT, ANOLEA, QMEAN6, and Procheck. Results: Five refined models were gener...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular microbiology

دوره 65 2  شماره 

صفحات  -

تاریخ انتشار 2007